

Department of Mechanical Engineering

B.E. 5th Sem

Course: Heat Transfer

Course Code: (5ME01)

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Solve steady state heat transfer problems of 1-D heat conduction with and without internal heat generation.	L3
2	Design and to analyse the performance of extended surfaces.	L4
3	Explain the laws of radiation and its applications.	L2
4	Predict heat transfer coefficients for forced convection heat transfer applied to internal and external flow conditions.	L3
5	Determine heat transfer coefficients for free convection heat transfer	L4
6	Design and to analyse the performance of heat exchangers using NTU and LMTD methods.	L5

۸ <u>۲</u> <u>۱</u> 111 1 **h**1

Course: Heat Transfer-lab

Course Code: (5ME06)

At the end of Heat Transfer Course-lab the student will be able:

Co.	Lab Outcomes	Level of Learning
No		(As per Bloom's
		Taxonomy)
1	Determine thermal conductivity for metal bar and	L-5
	insulating powder experimentally	
2	Determine heat transfer coefficients in free and forced	L-5
	convection experimentally	
3	Evaluate various parameters in the radiation heat	L-5
	transfer such as Emissivity, Stefan Boltzman's	
	constant etc. experimentally	

Department of Mechanical Engineering

Course: METROLOGY & QUALITY CONTROL

Course Code: (5ME02)

At the end of METROLOGY & QUALITY CONTROL Course the student will be able:

Co.	Course Outcomes	Level of Learning
No		(As per Bloom's Taxonomy)
1	Describe methods of quality control and its importance to industry.	L3
2	Estimate various control charts using statistical quality control tools.	L5
3	Analyse various types of non-destructive testing.	L4
4	Evaluate various types of standard measurements.	L5
5	Evaluate linear and angular measurements.	L5
6	Evaluate gear measurement.	L5

Course: METROLOGY & QUALITY CONTROL-lab

Course Code: (5ME07)

At the end of METROLOGY & QUALITY CONTROL-lab Course the student will be able:

Co. No	Lab Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Apply the principles involved in measurement and inspection.	L2
2	Select and use appropriate measurement instruments for a given application.	L1
3	Apply the basics of sampling in the context of manufacturing.	L3

Course: Kinematics of Machines

Code: (5ME03)

At the end of Kinematics of Machines Course the student will be able:

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Identify specific links for suitable development of various mechanisms.	L3
2	Analyse the Velocity and acceleration method to determine the motion of mechanisms.	L4
3	Use of graphical and analytical methods for synthesis of mechanisms	L3
4	Evaluate frictional torque in pivot, collar bearings, Clutches and Dynamometers	L5
5	Design the cam profile and to select proper cam, follower mechanism.	L3
6	Apply the gears ratio for transmitting the required power.	L3

Department of Mechanical Engineering

Late Purushottam Hari (Ganesh) Patil Shikshan Sanstha's Mauli Group of Institution's, College of Engineering and Technology, Shegaon

AICTE Approved, Affiliated to Sant Gadge Baba Amravati University, Amravati, ISO 9001:2015 Certified

Course: Kinematics of Machines-lab

Code: (5ME08)

At the end of Kinematics of Machines-lab Course the student will be able:

Co. No	Lab Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Evaluate specific links for suitable development of various mechanisms	L3
2	Design the cam profile and to select proper Cam, follower mechanism.	L3
3	Evaluate the gears ratio for transmitting the required power.	L3

Course: Measurement System

Course Code: (5ME04)

At the end of Measurement System Course, the student will be able:

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Analyse different measurement systems.	L4
2	Calculate different types of errors in the measurement system.	L5
3	Use strain gauges and pressure measurement devices for several applications.	L2
4	Compare different methods of force, Power and flow measurement.	L4
5	Select appropriate liquid level and temperature measurement devices for given applications.	L2
6	Measure speed of motors and rotating shafts by using tachometers, stroboscope.	L4

Department of Mechanical Engineering

Course: Measurement System-lab

Course Code: (5ME09)

At the end of Measurement System Course-lab, the student will be able:

Co. No	Lab Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Choose appropriate measuring device for measurement of various quantities	L4
2	Analyse the performance of various transducers and Angular displacement measuring dvice	L4
3	Calibrate various measuring devices	L5

Department of Mechanical Engineering

B.E. 6th Sem

Course: Design of Machine Elements

Course Code: (6ME01)

At the end of Design of Machine Elements Course Student will be able to;

		Taxonomy)
1	Design Riveted and Welded joints.	L3
2	Apply Design Procedure for Knuckle Joints, Springs and Power screw	L3
3	Design types of shafts, keys, couplings for various machines.	L3
4	Analyse the various types of bearings and design procedure of IC Engine parts.	L4

Course: Design of Machine Elements-lab

Course Code: (6ME06)

At the end of Design of Machine Elements-lab Course Student will be able to;

Co. No	Lab Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Design various machine elements like joints, springs, couplings under various condition	L3
2	Convert design dimension into working / manufacturing drawing.	L4
3	Use design data book codes to standardize the design dimensions.	L3

Course: DYNAMICS OF MACHINES

Course Code: (6ME02)

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Analyse static forces of Plane mechanisms	L4
2	Analyse dynamic forces both by analytical and graphical methods on engine mechanisms.	L4
3	Analyse gyroscopic effect and Vehicle dynamics in Space mechanism	L4
4	Determine natural frequency of longitudinal & torsional vibrations of various systems	L3
5	Determine natural frequency of transverse vibrations of shaft subjected to different loading conditions	L3
6	Evaluate required parameters for static & dynamic balancing of rotating masses	L5

At the end of DYNAMICS OF MACHINES Course the student will be able:

Department of Mechanical Engineering

Course: DYNAMICS OF MACHINES-LAB Course Code: (6ME07)

At the end of DYNAMICS OF MACHINES-lab Course the student will be able:

Co. No	Lab Outcomes	Level of Learning (As per Bloom's
- 10		Taxonomy)
1	Analyse static forces of Plane mechanisms	L4
2	Evaluate natural frequency of transverse vibrations of	L3
	shaft subjected to different loading conditions	
3	Evaluate required parameters for static & dynamic	L5
	balancing of rotating masses	

Course: Control System Engineering

Course Code: (6ME03)

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Classify feedback control systems and explain modern control engineering tools	L-2
2	Solve control engineering problems using hydraulic and pneumatic controllers	L-3
3	Examine the transient response from systems	L-4
4	Analyse the stability of systems using Root Locus	L-4
5	Analyse the stability of systems using Bode Plots	L-4
6	Design a speed control system for prime movers	L-3

Department of Mechanical Engineering

Course:Non-Conventional Energy SystemsCourse Code: (6ME04)

At the end of Non-Conventional Energy Systems Course Student will be able to;

Co. No	Course Outcomes	Level of Learning (As per Bloom's Taxonomy)
1	Estimate the solar radiation intensity using various instruments.	L5
2	Explain the working of solar thermal systems and solar photovoltaic systems.	L2
3	Classify the various wind energy conversion systems.	L2
4	Describe biomass energy resources and their utilization.	L2
5	Illustrate ocean energy and the operational methods.	L3
6	Apply the principles of direct energy conversion using fuel cells and geothermal energy.	L3

Course: Renewable Energy Technologies

Course Code: (6FEME05)

At the end of Renewable Energy Technologies Course Student will be able to;

Co.	Course Outcomes	Level of Learning
No		(As per Bloom's
		Taxonomy)
1	Estimate the solar radiation intensity using various	L5
	instruments.	
2	Explain the working of solar thermal systems and	L2
	solar photovoltaic systems.	
3	Classify the various wind energy conversion systems.	L2
4	Describe biomass energy resources and their	L2
	utilization.	
5	Illustrate ocean energy and the operational methods.	L3
6	Apply the principle of direct energy conversion using	L3
	fuel cells and geothermal energy.	